至今,GenScript的服务及产品已被Cell, Nature, Science, PNAS等1300多家生物医药类杂志引用近万次,处于行业领先水平。NIH、哈佛、耶鲁、斯坦福、普林斯顿、杜克大学等约400家全球著名机构使用GenScript的基因合成、多肽服务、抗体服务和蛋白服务等成功地发表科研成果,再次证明GenScript 有能力帮助业内科学家Make research easy.

Characterization and functional analysis of two novel thermotolerant α-L-arabinofuranosidases belonging to glycoside hydrolase family 51 from Thielavia terrestris and family 62 from Eupenicillium parvum

Appl Microbiol Biotechnol. 2020; 
Liangkun Long, Lu Sun, Qunying Lin, Shaojun Ding, Franz J St John
Products/Services Used Details Operation
Plasmid DNA Preparation … Applied Microbiology and Biotechnology volume 104, pages8719–8733(2020)Cite this article … TtABF51A) was synthesized according to the published sequence (GenBank XP_003649438. 1) and cloned into vector plasmid pPICZαA by the Genscript Biotech Corporation (Nanjing … Get A Quote

摘要

Arabinofuranose substitutions on xylan are known to interfere with enzymatic hydrolysis of this primary hemicellulose. In this work, two novel α-L-arabinofuranosidases (ABFs), TtABF51A from Thielavia terrestris and EpABF62C from Eupenicillium parvum, were characterized and functionally analyzed. From sequences analyses, TtABF51A and EpABF62C belong to glycoside hydrolase (GH) families 51 and 62, respectively. Recombinant TtABF51A showed high activity on 4-nitrophenyl-α-L-arabinofuranoside (83.39 U/mg), low-viscosity wheat arabinoxylan (WAX, 39.66 U/mg), high-viscosity rye arabinoxylan (RAX, 32.24 U/mg), and sugarbeet arabinan (25.69 U/mg), while EpABF62C preferred to degrade arabinoxylan. For EpABF62C, th... More

关键词

Calcium, Filamentous fungi, Synergistic degradation, Thermal stability, α-L-arabinofuranosidase