至今,GenScript的服务及产品已被Cell, Nature, Science, PNAS等1300多家生物医药类杂志引用近万次,处于行业领先水平。NIH、哈佛、耶鲁、斯坦福、普林斯顿、杜克大学等约400家全球著名机构使用GenScript的基因合成、多肽服务、抗体服务和蛋白服务等成功地发表科研成果,再次证明GenScript 有能力帮助业内科学家Make research easy.

B7-H1 Selectively Controls TH17 Differentiation and Central Nervous System Autoimmunity via a Novel Non-PD-1-Mediated Pathway.

J Immunol. 2015; 
Herold M, Posevitz V, Chudyka D, Hucke S, Groß C, Kurth F, Leder C, Loser K, Kurts C, Knolle P, Klotz L, Wiendl H.
Products/Services Used Details Operation
Proteins, Expression, Isolation and Analysis 1 (Invitrogen), and the protein was expressed in suspension HEK 293‐6E cell culture (GenScript). Get A Quote

摘要

It is currently acknowledged that TH17 cells are critically involved in the pathogenesis of autoimmune diseases such as multiple sclerosis (MS). In this article, we demonstrate that signals delivered by the coinhibitory molecule B7-homologue 1 (B7-H1) via a B7-homologue 1 mouse-IgG2aFc (B7-H1-Ig) fusion protein nearly abolish TH17, but not TH1 and TH2, differentiation via direct interaction with the T cell. These effects were equally pronounced in the absence of programmed death-1 or B7.1 and B7.2 on the T cell side, thus providing clear evidence that B7-H1 modulates T cell differentiation via a novel receptor. Mechanistically, B7-H1 interfered with early TCR-mediated signaling and cytokine-mediated induction o... More

关键词