New insights on cellular and molecular aspects of both oligodendrocyte (OL) differentiation and myelin synthesis pathways are potential avenues for developing a cell-based therapy for demyelinating disorders comprising multiple sclerosis. MicroRNAs (miRNA) have broad implications in all aspects of cell biology including OL differentiation. MiR-184 has been identified as one of the most highly enriched miRNAs in oligodendrocyte progenitor cells (OPCs). However, the exact molecular mechanism of miR-184 in OL differentiation is yet to be elucidated.
New insights on cellular and molecular aspects of both oligodendrocyte (OL) differentiation and myelin synthesis pathways are potential avenues for developing a cell-based therapy for demyelinating disorders comprising multiple sclerosis. MicroRNAs (miRNA) have broad implications in all aspects of cell biology including OL differentiation. MiR-184 has been identified as one of the most highly enriched miRNAs in oligodendrocyte progenitor cells (OPCs). However, the exact molecular mechanism of miR-184 in OL differentiation is yet to be elucidated.