Conjugated linoleic acid (CLA) has been extensively studied for decades because of its health benefits including cancer prevention, anti-atherogenic and anti-obesity effects, and modulation of the immune system. We previously described the production of trans-10, cis-12 CLA in Yarrowia lipolytica by expressing the gene coding for linoleic acid isomerase from Propionibacterium acnes (pai). However the stable strain produced CLA at about 0.08% of dry cell weight (DCW), a level of production which was not high enough for practical applications. The goal of the present study was to enhance production of CLA by genetic engineering of Y. lipolytica strains.
Conjugated linoleic acid (CLA) has been extensively studied for decades because of its health benefits including cancer prevention, anti-atherogenic and anti-obesity effects, and modulation of the immune system. We previously described the production of trans-10, cis-12 CLA in Yarrowia lipolytica by expressing the gene coding for linoleic acid isomerase from Propionibacterium acnes (pai). However the stable strain produced CLA at about 0.08% of dry cell weight (DCW), a level of production which was not high enough for practical applications. The goal of the present study was to enhance production of CLA by genetic engineering of Y. lipolytica strains.