至今,GenScript的服务及产品已被Cell, Nature, Science, PNAS等1300多家生物医药类杂志引用近万次,处于行业领先水平。NIH、哈佛、耶鲁、斯坦福、普林斯顿、杜克大学等约400家全球著名机构使用GenScript的基因合成、多肽服务、抗体服务和蛋白服务等成功地发表科研成果,再次证明GenScript 有能力帮助业内科学家Make research easy.

Differential Regulation of Angiogenesis using Degradable VEGF-Binding Microspheres.

Biomaterials.. 2016-07; 
Belair DG, Miller MJ, Wang S, Darjatmoko SR, Binder BYK, Sheibani N, Murphy WL.
Products/Services Used Details Operation
Peptide Synthesis ... On day 0 of experiments, iPSC-ECs were encapsulated in eight-arm PEG-norbornene hydrogels containing cell-adhesion peptide (CRGDS; GenScript) and matrix metalloproteinase-degradable crosslinker (KCGGPQGIWGQGCK; GenScript). ... Get A Quote

摘要

Vascular endothelial growth factor (VEGF) spatial and temporal activity must be tightly controlled during angiogenesis to form perfusable vasculature in a healing wound. The native extracellular matrix (ECM) regulates growth factor activity locally via sequestering, and researchers have used ECM-mimicking approaches to regulate the activity of VEGF in cell culture and in vivo. However, the impact of dynamic, affinity-mediated growth factor sequestering has not been explored in detail with biomaterials. Here, we sought to modulate VEGF activity dynamically over time using poly(ethylene glycol) microspheres containing VEGF-binding peptides (VBPs) and exhibiting varying degradation rates. The degradation rate of ... More

关键词

Biomimetic microspheres; Choroidal neovascularization; Degradable biomaterials; Endothelial cells; Growth factor sequestering; Vascular endothelial growth factor