Imine reductases (IRED) are promising catalysts for the synthesis of optically pure secondary cyclic amines. Three novel IREDs from Paenibacillus elgii B69, Streptomyces ipomoeae 91-03 and Pseudomonas putida KT2440 were identified by amino acid or structural similarity search, cloned and recombinantly expressed in E. coli and their substrate scope was investigated. Besides the acceptance of cyclic amines, also acyclic amines could be identified as substrates for all IREDs. For the IRED from P. putida, a crystal structure (PDB-code 3L6D) is available in the database, but the function of the protein was not investigated so far. This enzyme showed the highest apparent E-value of approximately Eapp = 52 for (R)-met... More
Imine reductases (IRED) are promising catalysts for the synthesis of optically pure secondary cyclic amines. Three novel IREDs from Paenibacillus elgii B69, Streptomyces ipomoeae 91-03 and Pseudomonas putida KT2440 were identified by amino acid or structural similarity search, cloned and recombinantly expressed in E. coli and their substrate scope was investigated. Besides the acceptance of cyclic amines, also acyclic amines could be identified as substrates for all IREDs. For the IRED from P. putida, a crystal structure (PDB-code 3L6D) is available in the database, but the function of the protein was not investigated so far. This enzyme showed the highest apparent E-value of approximately Eapp = 52 for (R)-methylpyrrolidine of the IREDs investigated in this study. Thus, an excellent enantiomeric purity of >99% and 97% conversion was reached in a biocatalytic reaction using resting cells after 24 h. Interestingly, a histidine residue could be confirmed as a catalytic residue by mutagenesis, but the residue is placed one turn aside compared to the formally known position of the catalytic Asp187 of Streptomyces kanamyceticus IRED.