Idiopathic pulmonary fibrosis (IPF) remains an age-related, fatal, incurable, epithelial-driven fibrotic lung disease despite the availability of approved antifibrotic drugs. The medical need for effective antipulmonary fibrotic therapies is thus very high. A promising therapeutic intervention for IPF is to target key cellular senescence processes in alveolar type 2 (AT2) cells. Herein, we introduce an inhalable gene-editable nanoplatform, comprising a CRISPR-Cas9 gene-editing system linked to a core FePt diatomic catalyst, encapsulated within a biocompatible hyaluronic acid (HA) surface layer (FePtR@HA). The FePt diatomic site facilitates H2O2 bridge adsorption, enabling efficient O-O bond cleavage and rapid c... More
Idiopathic pulmonary fibrosis (IPF) remains an age-related, fatal, incurable, epithelial-driven fibrotic lung disease despite the availability of approved antifibrotic drugs. The medical need for effective antipulmonary fibrotic therapies is thus very high. A promising therapeutic intervention for IPF is to target key cellular senescence processes in alveolar type 2 (AT2) cells. Herein, we introduce an inhalable gene-editable nanoplatform, comprising a CRISPR-Cas9 gene-editing system linked to a core FePt diatomic catalyst, encapsulated within a biocompatible hyaluronic acid (HA) surface layer (FePtR@HA). The FePt diatomic site facilitates H2O2 bridge adsorption, enabling efficient O-O bond cleavage and rapid catalytic conversion. The strong Fe-Pt interaction modulates the metal's d-band center, optimizing the adsorption of oxygen-containing intermediates. This precise regulation efficiently clears ROS, delivering robust antioxidant and antisenescence effects to AT2 cells. Simultaneously, the CRISPR-Cas9 gene editing system knocks down the pro-aging gene KAT7, reducing senescence-associated secretory phenotype (SASP) factors and further reversing AT2 cell senescence. Additionally, we demonstrated the antifibrotic efficacy of FePtR@HA in a lung-on-a-chip model, where it reprogrammed the fibrotic microenvironment, prevented myofibroblast recruitment to AT2 cells. Moreover, FePtR@HA showed satisfactory results in IPF mouse models, alleviating fibrosis and presenting a highly promising approach to combat the progression of IPF.