Tuberculosis (TB) remains a global health burden for which safe vaccines are needed. BCG has limitations as a TB vaccine so we have focused on live attenuated Mycobacterium tuberculosis mutants as vaccine candidates. Prior to human studies, however, it is necessary to demonstrate safety in non-human primates (NHP). In this study, we evaluate the safety and efficacy of two live attenuated M. tuberculosis double deletion vaccine strains mc26020 (ΔlysA ΔpanCD) and mc26030 (ΔRD1 ΔpanCD) in cynomolgus macaques. In murine models, mc26020 is rapidly cleared while mc26030 persists. Both mc26020 and mc26030 were safe and well tolerated in cynomolgus macaques. Following a high-dose intrabronchial ... More
Tuberculosis (TB) remains a global health burden for which safe vaccines are needed. BCG has limitations as a TB vaccine so we have focused on live attenuated Mycobacterium tuberculosis mutants as vaccine candidates. Prior to human studies, however, it is necessary to demonstrate safety in non-human primates (NHP). In this study, we evaluate the safety and efficacy of two live attenuated M. tuberculosis double deletion vaccine strains mc26020 (ΔlysA ΔpanCD) and mc26030 (ΔRD1 ΔpanCD) in cynomolgus macaques. In murine models, mc26020 is rapidly cleared while mc26030 persists. Both mc26020 and mc26030 were safe and well tolerated in cynomolgus macaques. Following a high-dose intrabronchial challenge with virulent M. tuberculosis, mc26020-vaccinates were afforded a level of protection intermediate between that elicited by BCG vaccination and no vaccination. BCG vaccinates had reduced tuberculosis-associated pathology and improved clinical scores as compared to saline and mc26030 vaccinates, but survival did not differ among the groups.