至今,GenScript的服务及产品已被Cell, Nature, Science, PNAS等1300多家生物医药类杂志引用近万次,处于行业领先水平。NIH、哈佛、耶鲁、斯坦福、普林斯顿、杜克大学等约400家全球著名机构使用GenScript的基因合成、多肽服务、抗体服务和蛋白服务等成功地发表科研成果,再次证明GenScript 有能力帮助业内科学家Make research easy.

Overexpression of the Selective Autophagy Cargo Receptor NBR1 Modifies Plant Response to Sulfur Deficit

Cells. 2020; 
Leszek Tarnowski, Milagros Collados Rodriguez, Jerzy Brzywczy, Dominik Cysewski, Anna Wawrzynska, Agnieszka Sirko
Products/Services Used Details Operation
GenParts™ DNA Fragments … Membranes were blocked with 5% non-fat dry milk and then probed with rabbit anti-AtNBR1 polyclonal IgG, custom generated against the 165-aa N-terminal fragment of NBR1 (GenScript, Carlsbad, CA, USA). Goat anti-rabbit IgG (Sigma-Aldirch, St … Get A Quote

摘要

Plants exposed to sulfur deficit elevate the transcription of what might reflect an increased demand for NBR1 in such conditions. Therefore, we investigated the role of this selective autophagy cargo receptor in plant response to sulfur deficit (-S). Transcriptome analysis of the wild type and NBR1 overexpressing plants pointed out differences in gene expression in response to -S. Our attention focused particularly on the genes upregulated by -S in roots of both lines because of significant overrepresentation of cytoplasmic ribosomal gene family. Moreover, we noticed overrepresentation of the same family in the set of proteins co-purifying with NBR1 in -S. One of these ribosomal proteins, RPS6 was chosen for v... More

关键词

Arabidopsis thaliana, autophagy, protein-protein interaction, sulfur deficit, transcriptome