This work reports the first example of a single-chain protein computationally designed to contain four α-helical segments and fold to form a 4-helix bundle encapsulating a supramolecular abiological chromophore that possesses exceptional nonlinear optical properties. The 109-residue protein designated SCRPZ-1, binds and disperses an insoluble hyperpolarizable chromophore, ruthenium(II) [5-(4'-ethynyl-(2,2';6',2''-terpyridinyl))-10,20-bis(phenyl)porphinato]zinc(II)-(2,2';6',2''-terpyridine)2+ (RuPZn) in aqueous buffer solution at a 1:1 stoichiometry. A 1:1 binding stoichiometry of the holoprotein is supported by electronic absorption and CD spectra, as well as e... More
This work reports the first example of a single-chain protein computationally designed to contain four α-helical segments and fold to form a 4-helix bundle encapsulating a supramolecular abiological chromophore that possesses exceptional nonlinear optical properties. The 109-residue protein designated SCRPZ-1, binds and disperses an insoluble hyperpolarizable chromophore, ruthenium(II) [5-(4'-ethynyl-(2,2';6',2''-terpyridinyl))-10,20-bis(phenyl)porphinato]zinc(II)-(2,2';6',2''-terpyridine)2+ (RuPZn) in aqueous buffer solution at a 1:1 stoichiometry. A 1:1 binding stoichiometry of the holoprotein is supported by electronic absorption and CD spectra, as well as equilibrium analytical ultracentrifugation and size exclusion chromatography. SCRPZ-1 readily dimerizes at μM concentrations, and an empirical redesign of the protein exterior produced a stable monomeric protein, SCRPZ-2, that also displayed a 1:1 protein:cofactor stoichiometry. For both proteins in aqueous buffer, the encapsulated cofactor displays photophysical properties resembling those exhibited by the dilute RuPZn cofactor in organic solvent: femtosecond-, nanosecond-, and microsecond-timescale pump-probe transient absorption spectroscopic data evince intensely absorbing holoprotein excited states having large spectral bandwidth that penetrate deep in the near-infrared (NIR) energy regime; the holoprotein electronically excited triplet state exhibits a microsecond timescale lifetime characteristic of the RuPZn chromophore. Hyper-Rayleigh light scattering (HRS) measurements carried out at an incident irradiation wavelength (λinc) of 1340 nm for these holoproteins demonstrate an exceptional dynamic hyperpolarizabilty (β1340 = 3100 x 10-30 esu). X-ray reflectivity measurements establish that this de novo designed hyperpolarizable protein can be covalently attached with high surface density to a silicon surface without loss of the cofactor, indicating that these assemblies provide a new approach to bio-inspired materials that have unique electro-optic functionality.