至今,GenScript的服务及产品已被Cell, Nature, Science, PNAS等1300多家生物医药类杂志引用近万次,处于行业领先水平。NIH、哈佛、耶鲁、斯坦福、普林斯顿、杜克大学等约400家全球著名机构使用GenScript的基因合成、多肽服务、抗体服务和蛋白服务等成功地发表科研成果,再次证明GenScript 有能力帮助业内科学家Make research easy.

Ultraviolet-B Radiation (UV-B) Relieves Chilling-Light-Induced PSI Photoinhibition And Accelerates The Recovery Of CO2 Assimilation In Cucumber (Cucumis sativus L.) Leaves.

Sci Rep. 2016; 
Zhang ZS,,, Jin LQ,, Li YT,, Tikkanen M, Li QM,, Ai XZ,, Gao HY,.
Products/Services Used Details Operation
Peptide Synthesis The primary anti-PsbO, anti-PsbA, anti-PsaA antibodies against synthetic polypeptides containing amino acid residues CQPSDTDLGAKVPKD, APPVDIDGIREPVSC, CRDYDPTTRYNDLLD, respectively, were purchased from Genscript company (Nanjing, China). Get A Quote

摘要

Ultraviolet-B radiation (UV-B) is generally considered to negatively impact the photosynthetic apparatus and plant growth. UV-B damages PSII but does not directly influence PSI. However, PSI and PSII successively drive photosynthetic electron transfer, therefore, the interaction between these systems is unavoidable. So we speculated that UV-B could indirectly affect PSI under chilling-light conditions. To test this hypothesis, the cucumber leaves were illuminated by UV-B prior or during the chilling-light treatment, and the leaves were then transferred to 25 °C and low-light conditions for recovery. The results showed that UV-B decreased the electron transfer to PSI by inactivating the oxygen-evolving comple... More

关键词