至今,GenScript的服务及产品已被Cell, Nature, Science, PNAS等1300多家生物医药类杂志引用近万次,处于行业领先水平。NIH、哈佛、耶鲁、斯坦福、普林斯顿、杜克大学等约400家全球著名机构使用GenScript的基因合成、多肽服务、抗体服务和蛋白服务等成功地发表科研成果,再次证明GenScript 有能力帮助业内科学家Make research easy.

HDX-MS reveals structural determinants for RORγ hyperactivation by synthetic agonists.

Elife. 2019; 
StrutzenbergTimothy S,Garcia-OrdonezRuben D,NovickScott J,ParkHaJeung,ChangMi Ra,DoebellinChristelle,HeYuanjun,PatouretRémi,KameneckaTheodore M,GriffinPatri
Products/Services Used Details Operation
Gene Synthesis Our RORγLBD-SRC2 cDNA was designed based on a previously published construct (Li et al., 2017), synthesized by Genscript, and cloned into the pESUMO vector using the same enzymes as before. Get A Quote

摘要

Members of the nuclear receptor (NR) superfamily regulate both physiological and pathophysiological processes ranging from development and metabolism to inflammation and cancer. Synthetic small molecules targeting NRs are often deployed as therapeutics to correct aberrant NR signaling or as chemical probes to explore the role of the receptor in physiology. Nearly half of NRs do not have specific cognate ligands (termed orphan NRs) and it's unclear if they possess ligand dependent activities. Here we demonstrate that ligand-dependent action of the orphan RORγ can be defined by selectively disrupting putative endogenous-but not synthetic-ligand binding. Furthermore, the characterization of a library of RORγ m... More

关键词

biochemistry,chemical biology,human,hydrogen-deuterium exchange,ligand activation,nuclear recep