至今,GenScript的服务及产品已被Cell, Nature, Science, PNAS等1300多家生物医药类杂志引用近万次,处于行业领先水平。NIH、哈佛、耶鲁、斯坦福、普林斯顿、杜克大学等约400家全球著名机构使用GenScript的基因合成、多肽服务、抗体服务和蛋白服务等成功地发表科研成果,再次证明GenScript 有能力帮助业内科学家Make research easy.

Metabolic engineering of microbes for branched-chain biodiesel production with low-temperature property.

Biotechnol Biofuels. 2015; 
TaoHui,GuoDaoyi,ZhangYuchen,DengZixin,LiuTian
Products/Services Used Details Operation
Gene Synthesis The alsS gene [GenBank: 936852] from B. subtilis was synthesized using GenScript (Nanjing, China) with the sequence of the ribosome binding site (rbs) and cloned into the XbaI-BamHI sites of the plasmid pET28a (+), yielding pDG16. The ilvC [GenBank: 948286] and ilvD [GenBank: 948277] genes were amplified from E. coli genomic DNA with primers ilvC-XbaI/ilvC-SpeI-BamHI and ilvD-XbaI/ilvD-SpeI-BamHI, and the PCR products were cloned into pET28a (+), yielding pDG17 and pDG18, respectively. Get A Quote

摘要

The steadily increasing demand for diesel fuels calls for renewable energy sources. This has attracted a growing amount of research to develop advanced, alternative biodiesel worldwide. Several major disadvantages of current biodiesels are the undesirable physical properties such as high viscosity and poor low-temperature operability. Therefore, there is an urgent need to develop novel and advanced biodiesels.

关键词

Biodiesel,Branched-chain amino acid biosynthesis,Branched-chain esters,E. coli,Metabolic engineering,Pichia pastoris,WS/