As an integral part of modern cell biology, fluorescence microscopy enables quantification of the stability and dynamics of fluorescence-labeled biomolecules inside cultured cells. However, obtaining time-resolved data from individual cells within a live vertebrate organism remains challenging. Here we demonstrate a customized pipeline that integrates meganuclease-mediated mosaic transformation with fluorescence-detected temperature-jump microscopy to probe dynamics and stability of endogenously expressed proteins in different tissues of living multicellular organisms.
As an integral part of modern cell biology, fluorescence microscopy enables quantification of the stability and dynamics of fluorescence-labeled biomolecules inside cultured cells. However, obtaining time-resolved data from individual cells within a live vertebrate organism remains challenging. Here we demonstrate a customized pipeline that integrates meganuclease-mediated mosaic transformation with fluorescence-detected temperature-jump microscopy to probe dynamics and stability of endogenously expressed proteins in different tissues of living multicellular organisms.