Stem cell transplantation has emerged as a promising therapeutic strategy, but the exact mechanisms by which stem cells exposed to hypoxic conditions increase the survival rate and rescue ischemic injury at the graft site are not well known. In this study, we aimed to determine if c-Met-activated mesenchymal stem cells (MSCs) pre-exposed to hypoxia promote therapeutic efficacy when transplanted to ischemic models, and whether c-Met interacts with cellular prion protein (PrPC) present in the ischemic tissue.
Stem cell transplantation has emerged as a promising therapeutic strategy, but the exact mechanisms by which stem cells exposed to hypoxic conditions increase the survival rate and rescue ischemic injury at the graft site are not well known. In this study, we aimed to determine if c-Met-activated mesenchymal stem cells (MSCs) pre-exposed to hypoxia promote therapeutic efficacy when transplanted to ischemic models, and whether c-Met interacts with cellular prion protein (PrPC) present in the ischemic tissue.