Glucose-6-phosphate dehydrogenase (G6PD) participates in glucose utilization by catalysing the first step of the pentose-phosphate pathway in mammalian cells. Previous studies have shown that changes in G6PD levels can promote tumor cell proliferation or apoptosis via the STAT3/5 pathway in a human melanoma xenograft model. G6PD cooperates with NADPH oxidase 4 (NOX4) in the cellular metabolism of reactive oxygen species (ROS) and in maintaining the intracellular redox state.
Glucose-6-phosphate dehydrogenase (G6PD) participates in glucose utilization by catalysing the first step of the pentose-phosphate pathway in mammalian cells. Previous studies have shown that changes in G6PD levels can promote tumor cell proliferation or apoptosis via the STAT3/5 pathway in a human melanoma xenograft model. G6PD cooperates with NADPH oxidase 4 (NOX4) in the cellular metabolism of reactive oxygen species (ROS) and in maintaining the intracellular redox state.