目录产品 » High Affinity Ni-NTA Resin

High Affinity Ni-NTA Resin

Ni-NTA亲和层析介质(产品编号L00250)是把NTA(氮川三乙酸)共价偶联到4%琼脂糖介质上,再通过NTA的4个结合位点螯合Ni2+制备而成的亲和层析介质。Ni-NTA亲和层析介质的Ni2+脱落率较低,它能耐受蛋白纯化过程中使用的很多添加剂,并且有着较高的蛋白结合能力和稳定性,因此Ni-NTA亲和层析介质非常适用于多组氨酸重组蛋白的纯化。
¥570
L00250

Description

Ni-NTA亲和层析介质(产品编号L00250)是把NTA(氮川三乙酸)共价偶联到4%琼脂糖介质上,再通过NTA的4个结合位点螯合Ni2+制备而成的亲和层析介质。Ni-NTA亲和层析介质的Ni2+脱落率较低,它能耐受蛋白纯化过程中使用的很多添加剂,并且有着较高的蛋白结合能力和稳定性,因此Ni-NTA亲和层析介质非常适用于多组氨酸重组蛋白的纯化。

Key Features 产品特征
基质4%琼脂糖
平均粒径90 μm(45-165 μm)
吸附量≥20 mg 6xHis-tagged 蛋白(27 kDa)
储存溶液含20%乙醇的1×PBS

Ni-NTA亲和层析介质可耐受试剂
变性剂表面活性剂还原剂其他 
6 M 盐酸胍2%Triton X-100 20 mM β-ME4 M MgCl250%甘油
8 M尿素2% Tween 201 mM DTT5 mM CaCl220%乙醇
——1% CHAPS——2 M NaCl  1 mM EDTA

返回

Storage & Stability 2-8℃;DO NOT FREEZE
返回

Applications:
1. Purification of polyhistidine-tagged proteins under native conditions.
2. Purification of polyhistidine-tagged proteins from E. coli under denaturing conditions.
返回

High Affinity Ni-NTA Resin

层析柱安装流程示意图 »

<
>

Xiao Guo , et al. SARS-CoV-2 specific adaptations in N protein inhibit NF-κB activation and alter pathogenesis. J Cell Biol. (2024-12)
Guilin Wang, et al. Natural SNP Variation in GbOSM1 Promotor Enhances Verticillium Wilt Resistance in Cotton. Advanced Science. (2024-10)
Liang-Qi Sun, et al. OsNLP3 enhances grain weight and reduces grain chalkiness in rice. Plant Commun. (2024-06)
Serges Sabukunze, et al. Comparison of the performance of SAG2, GRA6, and GRA7 for serological diagnosis of infection in cats. Front Vet Sci. (2024-06)
Hongchen Zhang, et al. Shank3 ameliorates neuronal injury after cerebral ischemia/reperfusion via inhibiting oxidative stress and inflammation. Redox Biol. (2023-12)
Wei Chen, et al. An inducible gene from glycoside hydrolase one family of decreases larval survival when feeding on host plant. Front Physiol. (2022-10)
Meng-Meng Chen, et al. Fungal oxysterol-binding protein-related proteins promote pathogen virulence and activate plant immunity. J Exp Bot. (2021-12)
Prakash G Kshirsagar, et al. Characterization of recombinant β subunit of human MUC4 mucin (rMUC4β). Sci Rep. (2021-12)
Zhang Q, et al. Gut Microbiome Directs Hepatocytes to Recruit MDSCs and Promote Cholangiocarcinoma. Cancer Discovery. (2021-05)
Niu Y, et al. A Type I-F Anti-CRISPR Protein Inhibits the CRISPR-Cas Surveillance Complex by ADP-Ribosylation. Molecular Cell. (2020-11)
Jing Tang, et al. GDSL lipase occluded stomatal pore 1 is required for wax biosynthesis and stomatal cuticular ledge formation. New Phytol. (2020-07)
Chen L, et al. Epitope-directed antibody selection by site-specific photocrosslinking. Sci Adv. (2020-04)
Li H, et al. Flavones Produced by Mulberry Flavone Synthase Type I Constitute a Defense Line against the Ultraviolet-B Stress. Plants (Basel, Switzerland). (2020-02)
Liu M, et al. PRMT5-dependent transcriptional repression of c-Myc target genes promotes gastric cancer progression. Theranostics. (2020-01)
Wang L1, et al. Histone Modifications Regulate Chromatin Compartmentalization by Contributing to a Phase Separation Mechanism. Mol Cell. (2019)
ZhangYumin, et al. Maize VIVIPAROUS1 Interacts with ABA INSENSITIVE5 to Regulate GALACTINOL SYNTHASE2 Expression Controlling Seed Raffinose Accumulation. J. Agric. Food Chem. (2019)
ZiyuanHaoXiWangYaxianZongShaoyingWenYanliChengHuogenLi, et al. Enzymatic activity and functional analysis under multiple abiotic stress conditions of a dehydroascorbate reductase gene derived from Liriodendron Chinense. Environmental and Experimental Botany. (2019)
查看更多
返回