

Manual

Version: 04

Update: 01/23/2024

GenCRISPR™ Ultra NLS-Cas9-basic GMP

Cat. No.: Z03623

Table of Contents

Product Introduction	2
Contents	3
Reagents Required But Not Provided	3
gRNA and HDR Template Preparation	4
Protocols	4
1. Transfect Primary T cells with GenCRISPR™ Ultra NLS-Cas9-basic GMP using Lonza 4D-Nucleofector® Electroporation System	
2. Evaluation of <i>In Vitro</i> Cleavage Efficiency of GenCRISPR™ Ultra NLS-Cas9-basic GMP	7
Appendix 1: Quality Control Specifications	8
Appendix 2: Recommended Reaction Conditions Using Different Electroporation Instrumen	ıts 9
Appendix 3: Case Studies	10
1. TRAC and PD-1 knock-out in primary T cells using 4D-Nucleofector® electroporation system	10
2. CD96 and NKG2A knock-out in NK92 cells using 4D-Nucleofector® electroporation system	10
3. RAB11A knock-out in 293T cells using Neon™ electroporation system	11
4. Gene knock-in at TRAC site in primary T cells using 4D-Nucleofector® electroporation system	12
Poforoncos	12

Product Introduction

GenCRISPR™ Ultra NLS-Cas9-basic GMP is utilized for CRISPR gene editing applications. The Cas9 nuclease forms a stable ribonucleoprotein (RNP) complex with the guide RNA (gRNA) component. With the help of nuclear localization signal (NLS) expressed with the Cas9 nuclease, the RNP complex enters the nucleus and cleaves the target gene. When compared with a plasmid-based delivery system, the RNP delivery system has been observed to increase the on-target gene editing efficiency and decrease off-target effects.

GenScript provides two types of Cas9 nucleases in basic GMP* for selection based on your specific downstream applications.

Table 1: GenCRISPR™ Ultra Cas9 Nuclease Selection

Nuclease	Description
Cara CRICRRIM Lillers All C. Caro la acia CAAR	Recombinant Cas9 nuclease (wild type) of Streptococcus
GenCRISPR™ Ultra NLS-Cas9-basic GMP	pyogenes; ideal choice for most CRISPR gene editing
(Z03623)	applications where high editing efficiency is preferred.
	Recombinant enhanced specificity Cas9 nuclease (mutant)
GenCRISPR™ Ultra eSpCas9-2NLS-basic	of Streptococcus pyogenes; ideal for CRISPR gene editing
GMP	applications which require low off-target effects and robust
(Z03624)	on-target cleavage.

Product Name: GenCRISPR™ Ultra NLS-Cas9-basic GMP

Source: Recombinant Cas9 nuclease (wt) with an N-terminal NLS expressed in E.coli

Species: S. pyogenes

Tag: Tag-free

Theoretical Molecular Weight: 160 kDa

Concentration: 10 mg/ml

Active Temperature: Optimal at 37 °C.

Application: sgRNA-dependent double-stranded DNA cleavage.

Storage Buffer: 25 mM Tris-HCl, 300 mM NaCl, 0.1 mM EDTA, 50% Glycerol pH 8.0.

Storage & Stability: Store at -20 °C for up to 12 months from the date of manufacture. Avoid repeated

freeze-thaw cycles. Do not store below -20 °C!

*basic GMP is a branding term that GenScript uses to describe reagents manufactured in compliance with ISO 9001 and ISO 13485 quality management system standards and with more stringent process controls and relatively complete documentation records. GenScript is capable of providing documents, site audit and other support to help with the applications of your projects in specific regions.

Contents

Contents	Cat. No.	Amount	Concentration	Storage
GenCRISPR™ Ultra NLS-Cas9-basic GMP	Z03623-100	100 μg	10 mg/ml	-20 °C
	Z03623-500	500 μg		
	Z03623-1	1 mg		

Reagents Required But Not Provided

- 1. Guide RNA
 - GenCRISPR sgRNA Synthesis Kit (Cat. No. L00694) or
 - CRISPR Synthetic sgRNA Services (see genscript.com)
- 2. Homology-Directed Repair (HDR) Knock-in Templates
 - Single-stranded DNA Synthesis Services (see genscript.com) or
 - Double-strand DNA Synthesis Services (see genscript.com)
- 3. Reagents and instrument for electroporation
- 4. GenCRISPR Mutation Detection Kit (Cat. No. L00688)
- 5. GenCRISPR T7 Endonuclease I (Cat. No. Z03396)
- 6. 1× TE buffer, pH 8.0 and nuclease-free water
- 7. Proteinase K (for in vitro cleavage)
- 8. Substrate DNA containing the target sequence for in vitro cleavage of DNA

gRNA and HDR Template Preparation

If SafeEdit sgRNA or EasyEdit sgRNA from GenScript Synthetic sgRNA Service is being used, please keep the RNA oligonucleotides tightly sealed at -20 °C for long-term storage and avoid repeated freeze-thaw cycles. We recommend working in a sterile environment, and using Nuclease-free pipette tips and tubes.

- 1. Centrifuge tube(s) at 12,000 rpm for 2 min at 4 °C before opening to ensure RNA oligos are at the bottom of the tube(s).
- 2. Resuspend oligos in nuclease-free TE buffer to reach the appropriate stocking solution concentration. For example, for making 100 μ M stocking solution:

Normalized Oligo Quantity Delivered (nmol)	Nuclease-free TE buffer (μl)
2	20
4	40
10	100
50	500

3. Vortex for 15 seconds and centrifuge for 1 minute at 12,000 rpm, make sure the gRNA is completely dissolved.

Note: Avoid repeated freeze-thaw cycles after dissolving. If necessary, divide the stocking solution into small aliquots, and centrifuge for 30 seconds at 4,000 rpm to ensure all solutions are at the bottom of the tubes. Stocking solutions with high concentration (e.g. $100 \mu M$) can be stored at -20 °C for 12 months.

4. Prepare working solutions by adding appropriate amount of nuclease-free water to the stocking solution.

Note: If starting with frozen stocking solution, leave the solution at 4 °C for 30 min to thaw. Then vortex for 15 seconds and centrifuge for 30 seconds at 4,000 rpm to ensure all solutions are at the bottom of the tubes. Working solutions with lower concentration (e.g. 25 μ M) can be stored at -20 °C for 3 months.

RNA Oligo Preparation for gRNA generated by in vitro transcription (Optional)

If using *in vitro* transcribed gRNA with GenCRISPR[™] Ultra NLS-Cas9-basic GMP in CRISPR gene editing, GenCRISPR sgRNA Synthesis Kit (Cat. No. L00694) is also recommended for the gRNA preparation for obtaining gRNA quickly and simply. Please find the GenCRISPR sgRNA Synthesis Kit manual for detailed guidelines of *in vitro* transcribed gRNA generation at **genscript.com**.

Homology-Directed Repair (HDR) Knock-in Templates Preparation (Optional)

If HDR DNA templates are being used to perform gene knock-in with CRISPR gene editing system, Homology-Directed Repair (HDR) Knock-in Templates Synthesis Service from GenScript is highly recommended. Please find the detailed user manual for HDR knock-in templates preparation at **genscript.com**.

Transfect Primary T cells with GenCRISPR™ Ultra NLS-Cas9-basic GMP using Lonza 4D-Nucleofector® Electroporation System

	Before Starting					
Prepare required amount of primary T cells for gene editing						
Isolate primary T cells from peripheral blood mononucl				nonuclear cells (PB	MC) and activ	ate the
		opriate reagents and		·	·	
		s in an incubator (37°		or 3 davs before elec	troporation to	obtain
D		diting efficiency.	-, -,,			
Prepare reagents and cells	2. Conversion formula for Cas9 nuclease:					
	Cat. No.	Concentration	Mass	Molar weight	Volume	
	Z03623	10 mg/ml	1000 ng	6.25 pmol	0.1 μΙ	
	203023	10 1116/1111	1000 118	0.23 pinoi	0.1 μι	
	Note: For Recomme	ended Reaction Condi	tions Using (GenCRISPR™ I Iltra N	I S-Cas9-hasic	GMP
Summary of recommended		SPR™ Ultra eSpCas9-2	_			
reaction system	, ,	ofector® electroporat		,	•	oration
	System of 4D-Nucle			——————————————————————————————————————	Z III page 3.	
		Cell Transfection				
	1. On the day of tra	ansfection, add primar	y T cell-spec	ific growth medium	to a 48-well pl	late and
Chan de Buserana and auditour	pre-warm it at 3	7°C. Transfer 240 μl co	omplete grov	vth medium for prin	nary T cell cult	ure into
Step 1: Prepare cell culture	each well of the	48-well-plate, incubat	e at 37°C ag	ain to pre-warm.		
medium	2. Prepare the elec	ctroporation transfect	ion reagents	for transfection. Se	t the electrop	oration
	program prior to transfection.					
	1. Mix GenCRISPR	■ Ultra NLS-Cas9-basic ■ Ultra NLS-Cas9-basic	GMP and sg	RNA at an appropri	ate molar ratio	e.g.
	1:2) with the ele	ctroporation buffer in	a nuclease-f	ree centrifuge tube	as shown belo	w:
	Note: The molar	ratio of Cas9: sgRNA:	should be op	timized mainly base	d on the targe	et
		and transfection met	-	·		
Step 2: Prepare the RNP	Reagent		20.40	Amount		
complex		Ultra NLS-Cas9-basic (IMP	0.4 μl, 25 pmol (~4	000 ng)	
r	(Z03623)			0.4 50	715>	
	sgRNA	an la ceffa a		0.4 μl, 50 pmol (~1	515 ng)	
	Electroporation			3.2 μΙ		
	Total reaction			4 μl		-1 - 41
	2. Incubate the mix solution at 37 °C or room temperature for 15-30 minutes to asse			ites to assemb	oie the	
	RNP complex (~	25 pmol).				

	·
Step 3: Electroporation	 Centrifuge the cells for 10 minutes at 300 g at room temperature, completely remove the cell culture supernatant. Wash the cells with 1 × PBS, centrifuge the cells for 10 min at 300 g at room temperature, and completely remove the supernatant again. Add 16 μl of electroporation buffer to suspend approximately 1.0 × 10⁶ cells, mix thoroughly. Aspirate 16 μl of the cell suspension (from Step 3.3) and add to the RNP complex in electroporation buffer (from Step 2). If performing gene knock-in experiment, aspirate 16 μl of cell suspension (from step 3.3) and 1-3 μg of HDR donor template to the RNP complex in electroporation buffer (from step 2), mix thoroughly. Use primary T cells-specific electroporation reagents from Lonza to proceed with the electroporation according to Lonza's P3 Primary Cell 4D-Nucleofector™ X Kit (Cat. No. SV4XP-3032) protocol. If electroporation reagents from other vendors are applied, please refer to the specific protocols. Note: 1) Avoid creating bubbles when pipetting and mixing reagents; After mixing the RNP complex with the cells, immediately proceed with the transfection. After the electroporation, transfer the cell mixture immediately to the pre-warmed complete growth medium (from Step 1.1). Culture the cells in an incubator (37 °C, 5% CO₂) for 3-6 days.
	Gene Editing Efficiency Analysis
	 Methods for gene editing efficiency analysis at different levels: Genome level- NGS and Sanger sequencing are generally used to determine gene editing
	efficiency precisely. GenScript is one of the most reliable vendors providing sequencing
	service, please see genscript.com or contact <u>seq@genscript.com</u> for more information.
	Translational level- fluorescence-activated cell sorting (FACS) is generally used to
Step 4: Analyze gene editing	determine the gene editing efficiency at functional level. Note: Specific antibodies
efficiency and perform	against target protein are required if performing FACS assay.
downstream applications	For genome-wide off-target efficiency- GenScript provides off-target monitoring service
	based on iGUIDE assay. Please see genscript.com or contact seq@genscript.com for more
	information.
	Alternatively, use the GenCRISPR Mutation Detection Kit (L00688) to verify the gene
	editing efficiency for knock-out assays.
	2. Proceed with downstream applications as needed.

Evaluation of *In Vitro* Cleavage Efficiency of GenCRISPR™ Ultra NLS-Cas9-basic GMP

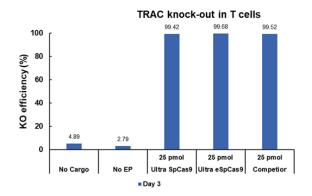
Before Starting			
Reagents preparation	 Prepare the specific substrate DNA - We recommend GenScript DNA Synthesis Service (see genscript.com) for this application, or PCR amplification of the substrate DNA (Note: the PCR product needs to be purified prior to use). Prepare the substrate DNA working solution at an appropriate concentration (e.g. 80) 		
Reagents preparation		n with nuclease-free water on ice. If needed, please contact us for free stock buffer). but can be adjusted according to the user's specific	
	In Vitro Cleavage		
	Assemble the reaction in a nuclease-free centrifuge tube or a PCR strip tube at room temperature on a clean bench in the following order: Table 2: Reaction process for in vitro cleavage of DNA		
	Components	Volume	
	10 × Reaction Buffer	2 μΙ	
	100 ng sgRNA	2 μl (50 ng/μl)	
Cleavage procedures	50 ng GenCRISPR™ Ultra NLS-Cas9- basic GMP (Z03623)	2 μl (25 ng/μl)	
	Nuclease-free water	12 μΙ	
	Mix thoroughly, incubate for 10 min to prepare RNP complex at 37 °C;		
	160 ng Substrate DNA	2 μl (80 ng/μl)	
	Mix thoroughly, incubate for 1 hour at 37 °C;		
	Add 1 μl Proteinase K (20 μg/μl), incubate for 20 min at 55 °C;		
	After incubation, determine the <i>in vitro</i> cleavage efficiency by agarose gel electrophoresis.		

Appendix 1: Quality Control Specifications

GenCRISPR™ Ultra NLS-Cas9-basic GMP (Z03623) is manufactured in compliance with ISO 9001 and ISO 13485 quality management system standards and with more stringent process controls and relatively complete document records. GenCRISPR™ Ultra NLS-Cas9-basic GMP (Z03623) meets the following quality control specifications.

Assay	Specifications
Appearance	Clear, colorless, liquid
Describes	≥ 95% as analyzed by SDS-PAGE
Purity	≥ 95% as analyzed by SEC-HPLC
Concentration by A280	10 mg/ml ± 1 mg/ml
Bioactivity (in vitro)	≥ 90%
Residual DNase	≤ 10 ng/mg
Residual RNase	≤1 ng/mg
Endotoxin Level	≤ 10 EU/mg
Residual HCP	≤ 10 ng/mg
Residual HCD	≤1 ng/mg
Mycoplasma	< LOD
Bioburden	<1 CFU/ml

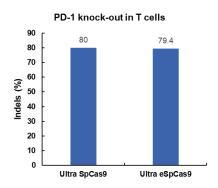
Appendix 2: Recommended Reaction Conditions Using Different Electroporation Instruments

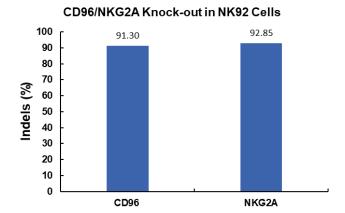

The following reaction conditions for cell transfection using GenCRISPR™ Ultra NLS-Cas9-basic GMP (Z03623) or GenCRISPR™ Ultra eSpCas9-2NLS-basic GMP (Z03624) with Neon™ electroporation system or 4D-Nucleofector® electroporation system are recommended as a starting point. Further optimization may be needed for best performance.

Neon™ electroporation system for cell lines and primary T cells			
Cas9 nuclease	GenCRISPR™ Ultra NLS-Cas9- basic GMP (Z03623) GenCRISPR™ Ultra eSpCas9-2NL basic GMP (Z03624)		
Cell numbers	2.0 × 10 ⁵		
Cas9: sgRNA (molar ratio)		1:1-1:3	
RNP amount	2.5-15 pmol 5-15 pmol		
HDR donor	1-3 μg		
Electroporation volume	10 μΙ		
4D-Nucleofector® electroporation system for cell lines and primary T cells			
Cas9 nuclease	GenCRISPR™ Ultra NLS-Cas9- GenCRISPR™ Ultra eSpCas basic GMP (Z03623) basic GMP (Z03624		
Cell numbers	0.4-1.0 × 10 ⁶		
Cas9: sgRNA (molar ratio)	1:1-1:5		
RNP amount	18.75-80 pmol 25-80 pmol		
HDR donor	1-3 μg		
Electroporation volume	20 μΙ		

Appendix 3: Case Studies

1. TRAC and PD-1 knock-out in primary T cells using GenCRISPR™ Ultra NLS-SpCas9-basic GMP or GenCRISPR™ Ultra eSpCas9-2NLS-basic GMP with Lonza 4D-Nucleofector® electroporation system.




Figure 1: TRAC and PD-1 knock-out efficiency in human primary T cells. Human primary T cells were cultured for the test. The cells were transfected with GenCRISPR™ Ultra NLS-SpCas9-basic GMP (Z03623) or GenCRISPR™ Ultra eSpCas9-2NLS-basic GMP (Z03624) or wild type Cas9, and sgRNA (synthesized by GenScript CRISPR Synthetic sgRNA Services) for human TRAC and PD-1 gene knock-out by electroporation. After transfection and cell culture, the TRAC knock-out efficiency was measured by FACS while PD-1 knock-out efficiency was measured by Sanger sequencing. Both GenScript Ultra SpCas9 and eSpCas9 show high editing efficiency.

Note: This experiment used the following:

Cas9: sgRNA (molar ratio) =1:2

RNP amount: ~ 25 pmol Cell number: 1.0×10^6 cells

2. CD96 and NKG2A knock-out in NK92 cells using GenCRISPR™ Ultra NLS-SpCas9-basic GMP or GenCRISPR™ Ultra eSpCas9-2NLS-basic GMP with Lonza 4D-Nucleofector® electroporation system

Figure 2: *CD96* and *NKG2A* knock-out efficiency in NK92 cells. Human NK92 cells were cultured for the test. The cells were transfected with GenCRISPR™ Ultra NLS-SpCas9-basic GMP (Z03623) and sgRNA (synthesized

by GenScript CRISPR Synthetic sgRNA Services) for human *CD96* or *NKG2A* gene knock-out by electroporation. After transfection and cell culture, the gene editing efficiency were analyzed by Sanger sequencing. GenScript GenCRISPR™ Ultra NLS-SpCas9-basic GMP (Z03623) shows high editing efficiency.

Note: This experiment used the following:

SpCas9: sgRNA (molar ratio) = 1:1.2

RNP amount: 80 pmol Cell number: 4.0×10^5 cells

3. RAB11A knock-out in 293T cells using GenCRISPR™ Ultra NLS-SpCas9-basic GMP with Neon™ electroporation system

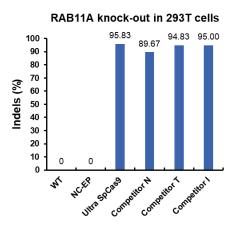


Figure 3: RAB11A knock-out efficiency in 293T cells. Human 293T cells were cultured for the test. The cells were transfected with GenCRISPR™ Ultra NLS-SpCas9-basic GMP (Z03623) or wild type Cas9 proteins from competitors and sgRNA (synthesized by GenScript CRISPR Synthetic sgRNA Services) for human RAB11A gene knock-out by electroporation. After transfection and cell culture, the gene editing efficiency was analyzed by Sanger sequencing. GenScript GenCRISPR™ Ultra NLS-SpCas9-basic GMP (Z03623) shows higher editing efficiency.

Note: This experiment used the following:

SpCas9: sgRNA (molar ratio) =1:3

RNP amount: 7.5 pmol Cell number: 2.0×10^5 cells

4. Gene knock-in at *TRAC* site in primary T cells using GenCRISPR™ Ultra NLS-SpCas9-basic GMP or GenCRISPR™ Ultra eSpCas9-2NLS-basic GMP with Lonza 4D-Nucleofector® electroporation system.

TRAC knock-in in T cells 30 25 21.98 22.14 20.61 20 Ultra SpCas9 D3 D6

Figure 4: Gene knock-in efficiency at *TRAC* site in primary T cells. The cells were transfected with GenCRISPR™ Ultra NLS-SpCas9-basic GMP (Z03623) or GenCRISPR™ Ultra eSpCas9-2NLS-basic GMP (Z03624), sgRNA (synthesized by GenScript CRISPR Synthetic sgRNA Services) and dsDNA HDR template (synthesized by GenScript Double-strand DNA Synthesis Services) for gene knock-in at *TRAC* site in primary T cells by electroporation. After transfection and cell culture, the gene knock-in efficiency was analyzed by FACS. Both GenScript GenCRISPR™ Ultra NLS-SpCas9-basic GMP (Z03623) and GenCRISPR™ Ultra eSpCas9-2NLS-basic GMP (Z03624) show high gene knock-in efficiency.

Note: This experiment used the following:

SpCas9/eSpCas9: sgRNA (molar ratio) =1:2

RNP amount: ~ 25 pmol Cell number: 1.0 × 10⁶ cells

References

- 1. Jinek, Martin, et al. "A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity." *science* 337.6096 (2012): 816-821.
- 2. Chen, Sean, et al. "Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes." *Journal of Biological Chemistry* 291.28 (2016): 14457-14467.
- 3. Larson, Matthew H., et al. "CRISPR interference (CRISPRi) for sequence-specific control of gene expression." *Nature protocols* 8.11 (2013): 2180-2196.
- 4. Ran, F. Ann, et al. "Genome engineering using the CRISPR-Cas9 system." *Nature protocols* 8.11 (2013): 2281-2308.
- 5. Kim, Sojung, et al. "Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins." *Genome research* 24.6 (2014): 1012-1019.

For research or manufacturing use. Not intended for clinical use. Direct human use, including taking orally and injection are forbidden.