

Rev01 DATASHEET

Update: Dec,28,2022

Calcitonin Gene Related Peptide (CGRP) (8-37), rat

Cat. No.: RP11090CN

Overview

CGRP (8-37), rat
Calcitonin Gene Related Peptide (CGRP)(8-37) inhibits the evoked discharge frequency of wide dynamic range neurons in dorsal horn of the spinal cord in rats. The present study was performed to explore the effect of CGRP(8-37) on the electrical stimulation-evoked discharge frequency of wide dynamic range (WDR) neurons in the dorsal horn of the spinal cord in rats. The results indicate that CGRP receptors play an important role in the transmission of presumed nociceptive information in the dorsal horn of the spinal cord.
$\label{lem:continuous} $$ {VAL}{THR}_{HIS}_{ARG}_{LEU}_{ALA}_{GLY}_{LEU}_{SER}_{ARG}_{SER}_{GLY}_{GLY}_{VAL}_{VAL}_{LYS}_{ASP}_{ASN}_{PHE}_{VAL}_{PRO}_{THR}_{ASN}_{VAL}_{GLY}_{SER}_{GLU}_{ALA}_{PHE}_{NH_2}_{DLY}_{ALA}_{PHE}_{NH_2}_{DLY}_{PRO}_{$
VTHRLAGLLSRSGGVVKDNFVPTNVGSEAF-NH ₂
C ₁₃₈ H ₂₂₄ N ₄₂ O ₄₁
NH ₂
3127.6

Properties

Purity	> 95%
Solubility	Soluble in water. The contents of this vial have been accurately determined. Both the stopper and the vial have been siliconized. Do not attempt to weight out a smaller portion of the contents.
Form	Lyophilized
Storage	Before using, store the peptide in the DRY form at 0 - 5 °C. For best and repeatable results, rehydrate the peptide immediately before using. Do not re-freeze any unused portions.
Note	a potent, long-lasting vasodilator; activation of CGRP receptors on pancreatic β-cells increases plasma levels of pancreatic enzymes.