

High-Efficiency gRNA-Cas9-Puro Plasmid Assembly Kit

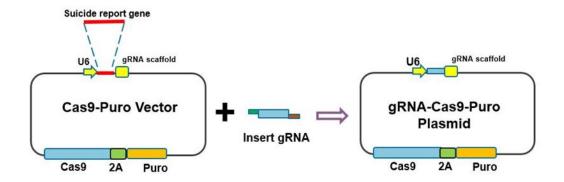

Cat. No.: L00693 Version 2018-07-16

Table of Contents Description 1 2 **II Contents III Key Features** 2 **IV Quality Control Analysis** 2 V Product Usage 3 VI Storage 3 **VII Protocol** 3 2 **VIIIFAQ** 6 **IX Ordering Information** 6

I Description

The High-Efficiency gRNA-Cas9-Puro plasmid Assembly Kit is used for easier and highly efficient cloning of gRNA fragments into Cas9 vectors. This vector has been constructed by integrating a suicide reporter gene into the gRNA insert site. Under the selection of this suicide report gene, almost 100% of clones are positive clones without screening. The High-Efficiency gRNA-Cas9-Puro plasmid is provided in both the circular and linear formats. The Puromycin resistant gene is linked by 2A, a self-cleavage peptide, and is expressed separately from Cas9, keeping the maximum activity of Cas9.

II Contents

Components	10-reaction	25-reaction	Concentration
Cas9-Puro Vector	20 µL	50 μL	50 ng/μL
Control gRNA insert	10 µL	25 µL	0.05 μM
Control gRNA primer F	10 μL	25 µL	10 μΜ
Control Screening primer R	50 μL	125 μL	10 μΜ

III Key Features

- Simplicity –Only a pair of primers is needed. The digestion and ligation can be done in a single reaction.
- ♦ Efficiency –Up to 100% positive clones.
- ♦ Fidelity –No mutations.
- ♦ Time-saving The construction reaction can be completed within 30 minutes.

IV Quality Control Analysis

- ♦ Positive clone rate: up to 100%.
- \diamond None colonies could be grown in DH5 α competent cells without the insert.

V Product Usage

Rapid construction of gRNA-Cas9 plasmid for the subsequent gene editing research.

VI Storage

Please store at -20°C.

VII Protocol

1 Design specific gRNA primers

Forward primer gRNA-F: CACC+N₁₉₋₂₁ (gRNA target sequences)
Reverse primer gRNA-R: AAAC+ N₁₉₋₂₁ (gRNA Reverse complementary sequence)
e.g: If the target sequence of gRNA is CATCATTGGAAGACGTTCTT,
the forward primer is CACCCATCATTGGAAGACGTTCTT,
and the reverse primer is AAACAAGAACGTCTTCCAATGATG.

2 Anneal the primers

- $\diamond\,$ Dissolve specific gRNA primers F and R to 10 $\mu M.$
- \diamond Dilute to 0.1 μ M.
- ⋄ Mix the primers F and R 1:1 by volume.
- ♦ Denature at 95°C for 5 minutes.
- Place the mixture at room temperature for another 10 minutes, so that the primers cool down to room temperature gradually.

3 Ligation reaction

	Experimental reaction	Positive control reaction
10×T4 DNA ligase buffer	1 μL	1 μL
Cas9-Puro Vector	1 μL	1 μL
annealed specific gRNA insert	0.5 μL	-
Control gRNA insert	-	0.5 µL
Bbs I(10 U/µL)	0.25μL	0.25µL
T4 DNA ligase(400U/μL)	0.25 μL	0.25 μL
H ₂ O	7 μL	7 μL
Total reaction volume	10 μL	10 μL

Reaction conditions:

Temperature	Time	Cycle	
37°C	5 minutes	3x	
16°C	5 minutes	JX.	
4°C	Hold	-	

4 Transformation

- \diamond Add 5 µL of the above reaction mixture to 50 µL DH5 α competent cells.
- ♦ Place the cells on ice for 30 minutes.
- ♦ Heat shock at 42°C for 1 min followed by ice bath for 2 minutes.
- $\diamond~$ Add 500 μL LB Broth and shake for 30 min at 37°C under 180 rpm.
- ♦ Add 100 μL to LB Agar plate with 100 μg/ml Ampicillin and incubate overnight at 37°C.

5 Colony PCR screening

	Experimental reaction	Positive control reaction
10×Taq buffer	2.5 µL	0.25 μL
10mM dNTP	0.5 μL	0.5 μL
Specific gRNA-F (10µM)	0.5 μL	-
Control gRNA primer F (10µM)	-	0.5 μL
Control Screening primer R (10µM)	0.5 μL	0.5 μL
Taq DNA polymerase (5U/μL)	0.25 μL	0.25 μL
Colony	a little	a little
H ₂ O	20.75 μL	20.75 μL
Total reaction volume	25 μL	25 μL

Note: Less than 10 clones is enough for screening in each experimental plate.

Reaction conditions:

Temperature	Time	Cycle
94°C	5 minutes	1
94°C	10 seconds	
55°C	10 seconds	25×
72°C	10 seconds	
72°C	5 minutes	1
4°C	Hold	-

PCR products are detected using agarose gel electrophoresis. The positive control band runs at 270bp. The negative control should remain blank.

Note:This is a basic protocol. The reagent concentrations, conditions, and parameters may need to be optimized.

VIII FAQ

- Which kinds of competent cells can be used for transformation?
 Answer: Suitable competent cells include, but are not limited to DH5α, Stbl2, Stbl3, EPI300, EPI400, JM108, ER2925 and DH10B-N. Inappropriate competent cells include, but are not limited to Top10, XL1-Blue, and SURE2.
- 2. What is the size of the plasmid before and after transformation?

 Answer: The size of Cas9-Puro vector provided in the kit is 9515bp, and the size of the target plasmid after transformation is about 9178-9180 bp depending on the inserted gRNA.
- Are there any other versions of gRNA-Cas9 constructs?
 Answer: GenScript carries a series of different versions of gRNA-Cas9 constructs, including "High-Efficiency gRNA-Cas9-Puro Plasmid (linear) Assembly Kit (Cat. No. L00691)", "High-Efficiency gRNA-Cas9-GFP Plasmid Assembly Kit (Cat. No. L00692)", and "High-Efficiency gRNA-Cas9-Puro Plasmid Assembly Kit (Cat. No. L00693)".

IX Ordering Information

Product Name	Cat. No.
GenCrispr Cas9 Nuclease	Z03386
GenCrispr Mutation Detection Kit	L00688
GenCrispr Cas9 Antibody, pAb, Rabbit	A01885

Contact us

Web: https://www.genscript.com Email: product@genscript.com

Fax: 1-732-518-5150