至今,GenScript的服务及产品已被Cell, Nature, Science, PNAS等1300多家生物医药类杂志引用近万次,处于行业领先水平。NIH、哈佛、耶鲁、斯坦福、普林斯顿、杜克大学等约400家全球著名机构使用GenScript的基因合成、多肽服务、抗体服务和蛋白服务等成功地发表科研成果,再次证明GenScript 有能力帮助业内科学家Make research easy.

The HIV capsid mimics karyopherin engagement of FG-nucleoporins

Nature. 2024-01; 
C. F. Dickson, S. Hertel, A. J. Tuckwell, N. Li, J. Ruan, S. C. Al-Izzi, N. Ariotti, E. Sierecki, Y. Gambin, R. G. Morris, G. J. Towers, T. Böcking & D. A. Jacques
Products/Services Used Details Operation
Custom Vector Construction pET28a vectors containing mCherry2-Nup98 fragments, as well as pGEX-6P-3 vectors containing importin-α, TNPO1 and TNPO3 were purchased from GenScript. Get A Quote

摘要

HIV can infect non-dividing cells because the viral capsid can overcome the selective barrier of the nuclear pore complex and deliver the genome directly into the nucleus1,2. Remarkably, the intact HIV capsid is more than 1,000 times larger than the size limit prescribed by the diffusion barrier of the nuclear pore3. This barrier in the central channel of the nuclear pore is composed of intrinsically disordered nucleoporin domains enriched in phenylalanine–glycine (FG) dipeptides. Through multivalent FG interactions, cellular karyopherins and their bound cargoes solubilize in this phase to drive nucleocytoplasmic transport4. By performing an in vitro dissection of the nuclear pore complex, we show that a pock... More

关键词